Оптические линии связи

Какой тип волокна выбрать: одномод или многомод?

Если Вы не знаете какой тип волокна Вам нужен для будущей оптической сети, то в первую очередь, необходимо выяснить, какое активное оборудование у Вас имеется. В описании оборудования будет четко прописано для каких типов волокон оно предназначено, на какой скорости и длине волны работает и его максимальное рабочее расстояние. Если же у Вас еще нет активного оборудования и Вы его будете покупать вместе с кабелем, то наш совет – закладывайте одномодовое волокно, с ним Вы точно не прогадаете, как со скоростями так и с расстоянием. Да и в наличии на складах оно бывает практически у всех компаний, которые продают оптические кабели связи. Для того чтобы Вам было легче ориентироваться мы приведем Вам рабочие расстояния и скорости для разных типов волокон, SMF– одномодовое, OM1 OM2, OM3, OM4 — многомодовые.

Волокно 100Mbit/s 1Gbit/s 10Gbit/s
SMF до 120 км до 120 км до 80 км
OM1 до 2 км до 500 м до 33 м
OM2 до 2 км до 2 км до 80 м
OM3 до 2 км до 2 км до 300 м
OM4 до 2 км до 2 км до 400 м

9.9. Компенсаторы дисперсии

Дисперсия выступает фактором ограничения скорости передачи оптических импульсных сигналов в одномодовом стекловолокне. Особенно заметно это ограничение на скоростях 10 Гбит и выше. Например, при скорости 2,5 Гбит/с сигнал может быть передан на расстояние до 1000 км без видимых искажений на длине волны 1,3 мкм в стандартном волокне G.652. Уже при скорости 10 Гбит/с дальность передачи не превысит 60 км в этом же волокне, а при скорости в 20 Гбит/с она будет только 15 км.

Управление дисперсией является важной частью проектирования линейных трактов. При этом необходимо уменьшить влияние как хроматической, так и поляризационной модовой дисперсии

При построении компенсаторов дисперсии используются методы создания волокон, компенсирующих дисперсию, и дифракционные решетки, например, интегральные и волоконные решетки Брэгга с линейно изменяющейся постоянной решетки . Пример использования волоконной решетки Брэгга в компенсаторе дисперсии приведен на рисунке 9.17.

Рисунок 9.17. Компенсатор дисперсии на основе волоконной брэгговской решетки

Волоконные компенсаторы хроматической дисперсии выполняются из волокна с противоположной по характеру дисперсией, т.е. для волокна с дисперсией D+ на заданной волне или в диапазоне волн предлагается использовать отрезок волокна с дисперсией D-. При этом отрезок волокна с D- по длине существенно меньше линейного волокна с D+. Волокна для компенсации дисперсии укладывают в небольшие катушки, легко размещаемые в поддонах аппаратуры или в виде модулей аппаратуры ВОСП. Отрезки волокон с D- соответствуют длинам компенсации 20, 40,…..100км. Вносимые дополнительные потери могут составить до 8дБ. Пример конструкции модуля компенсации дисперсии приведен на рисунке 9.18.

Рисунок 9.18. Конструктив модуля компенсации дисперсии волокна SMF (G.652) в диапазоне волн 1525-1565нм в пределах -50….-2100пс/нм для длинных и сверхдлинных оптических линий

Кроме волоконных компенсаторов дисперсии в составе блоков применяются компенсаторы на перестраиваемых волноводных решетках, которые отличаются малыми габаритами, малыми потерями оптической мощности и большим диапазоном перестройки. К таким компенсаторам относится TODC (Tunable Optical Dispersion Compensator) компании CIVCOM. Это устройство имеет диапазон перестройки ±1700пс/нм, а в реализации для транспондера ±2500пс/нм, потери мощности не более 1дБ, рабочая полоса волн 1528-1610нм. Управление перестройкой электрическое. Прибор может использоваться для линий одноволновой и многоволновой передачи с интервалом между каналами 50ГГц и скоростью передачи в каждом канале до 10Гбит/с. Конструкция TODC приведена на рисунке 9.19. Габариты прибора 30×12.7×9.75мм.

Рисунок 9.19. Конструкция компактного компенсатора хроматической дисперсии TODC

Особенности проектирования и монтажа волоконно-оптической связи

Проектирование волоконно-оптических линий связи является сложным и трудоемким процессом, который должен учитывать целый ряд особенностей, начиная от технической возможности проведения трассы и заканчивая количеством основного и вспомогательного оборудования, которое будет соединено в рамках сети.

Процесс проектирования и разработки линии связи можно разделить на несколько стадий:

  • определение технической возможности установки;
  • выбор типа кабеля и его длины;
  • проведение технических расчетов на предмет выявления величины коэффициента затухания сигнала, и других важных показателей;
  • выбор необходимой аппаратуры и вспомогательных средств для обеспечения бесперебойной работы сети и соответствия стандартам передачи информации;
  • проектирование и прокладка трассы. Монтаж волоконно-оптических линий связи может производиться двумя способами – навесным (кабель прокладывается по воздуху на уже существующих либо новых технических опорах) или подземным (для этого необходимо проделать специальные земельные работы). Выбор способа прокладки трассы зависит от климатического пояса, атмосферных условий (степень промерзания почвы, солнечная или ветровая активность), рельефа местности и других факторов;
  • подготовка необходимой технической документации с указанием количества точек подключения, различные разветвления и общая трассировка (так называемая скелетная схема);
  • перечень конкретных технических и аппаратных средств, задействованных в создании работоспособной линии связи (стационарные терминалы, усилители, трансиверы, муфты ответвления и другое оборудование);
  • согласование проекта с заказчиком и проведение монтажных работ.

Одна из главных особенностей установки заключается в том, что волоконно-оптический канал связи в рамках проекта может достигать нескольких десятков километров, тогда как стандартная длина провода существенно меньше. Это предусматривает наличие соединений в рамках одной линии связи между сегментами кабеля.

Соединить два сегмента провода можно несколькими способами:

  • разъемное соединение (при помощи оптических коннекторов). У этого способа есть одно преимущество – работы происходят достаточно быстро и не требуют специального оборудования. Главный недостаток заключается в том, что это существенно удорожает стоимость линии связи и способствует увеличению потерь сигнала при использовании большого количества соединительных элементов;
  • неразъемный способ. Здесь существует несколько вариантов, среди которых склеивание и сварка волоконно-оптических линий связи. Эти процессы довольно трудоемкие и требуют специального оборудования и практических навыков, но итогом является практически полное отсутствие потерь скорости передачи и монолитное соединение кабелей.

Волоконно-оптические линии связи, используемое оборудование для которых соответствует мировым стандартам, способны служить на протяжении полувека без видимой потери качества сигнала.

Основные характеристики оптического кабеля. Его преимущества и недостатки

Преимущество оптического кабеля перед кабелем обычным несомненно. Среди наиболее очевидных моментов хотелось бы выделить:

  • Невероятно высокая пропускная способность. Оптический кабель способен передать за малый отрезок времени значительное количество информации.
  • Оптоволокно не  излучает электромагнитные волны. Соответственно, оно и не способно подвергаться воздействию электромагнитного излучения. В результате сигнал защищен от искажений.
  • Кабель надежно защищен от несанкционированного подключения. Попытка несанкционированного подключения  вызывает нарушение целостности кабеля и прекращение передачи данных. Скрыть ее становится невозможно.
  • Очень незначительный показатель затухания сигнала.  Современное волокно оптического кабеляпри длине волны в 1500 нм обладает показателем затухания  около 0,3 дБ/км.  Это дает возможность расположить соседние повторители и усилители на расстоянии до 100 км.
  • Оптический кабель обладает меньшим весом и объемом, чем обычный. Например, диаметр 900-парного  телефонного кабеля 7,5 см. Его успешно заменит оптический кабель диаметром около 1,5 см. При этом большую часть кабеля составят всевозможные защитные оболочки. Диаметр  непосредственно оптоволокна составит 0,1 см.

  • При использовании оптического кабеля нет необходимости в заземлении оболочки.  Это связано с изолирующими свойствами оптоволокна.
  • Возможность использования  на предприятиях с повышенным риском. Связано с такой особенностью оптоволокна, как  отсутствию искрообразования. Именно благодаря ей оптический кабель  – пожаробезопасный материал.
  • Оптический кабель – весьма экономичный материал. Для изготовления оптоволокна используется кварц, элемент весьма недорогой и распространенный. В результате и стоимость самого оптического кабеля не отличается от стоимости кабеля обычного.
  • Долговечность. Ничто не вечно. Со временем теряют свои свойства все материалы, в том числе и  оптический кабель. Возрастает  затухание. Однако эти процессы происходят очень медленно. Скорость потери свойств оптического кабеля значительно ниже по сравнению с иными видами кабелей. Срок  бесперебойной работы оптического кабеля составляет не менее 25 лет.

Невзирая на  большое количество положительных моментов, использование оптического кабеля имеет и ряд недостатков:

  • Высокая стоимость  коммуникаций с оптическим кабелем. Правда,  это связано с  использованием дополнительного дорогого оборудования.  Стоимость самого оптического кабеля не слишком отличается от стоимости кабеля обычного.
  • Сложность монтирования сетей с  оптическим кабелем. Разъемы необходимо устанавливать буквально с микронной точностью. Само соединение должно быть выполнено очень точно, ровно. Наличие зазоров недопустимо. Поверхность стыка необходимо  гладко отполировать. При несоблюдении вышеуказанных требований  не избежать потерь в скорости и качестве передаваемого сигнала.
  • Соединения выполняются  сваркой или склеиванием. При склеивании используется особый гель, обладающий тем же значением коэффициента преломления, что и стекловолокно.
  • В процессе работы с оптическим кабелем используются  специальные инструменты. Монтаж  оптических сетей осуществляется исключительно высококвалифицированными специалистами.
  • Возможна порча оптического кабеля из-за резкого перепада температур. Стекловолокно трескается. Для решения данной проблемы  в производство запущены  оптические кабели, в процессе изготовления которых используется радиационно стойкое стекло.  К сожалению, это приводит к значительному увеличению стоимости.

Как видим, недостатки не столь существенны. Популярность оптических сетей растет с каждым днем. Одновременно снижается стоимость материала и растет число  специалистов, работающих с оптическим кабелем. При  такой тенденции в ближайшем будущем указанные недостатки себя изживут.

Классификация по материалу изготовления

Существует три типовых варианта конструктива сердцевины и внешнего слоя оптического волокна:

  • Стекло — стекло;
  • Пластик – пластик;
  • Стекло – пластик.

Самым популярным видом является цельностеклянное изготовление. При производстве используют диоксид кремния и расплавленный кварц.  Для получения различных характеристик добавляются германий, фосфор или бор.

Второй тип имеет более низкие показатели по сравнению с первым – его пропускная способность существенно ниже. Однако, прокладка оптоволоконного кабеля, состоящего полностью из пластика популярна из-за существенно сниженной стоимости.

На сегодняшний день третий тип практически не используется.

Использование волоконно-оптических кабелей в линиях электропередач

В линиях электропередач можно использовать различные типы кабелей, связанные с оптоволоконными кабелями. На выбор типа кабеля влияют многие факторы. Наиболее важными из них являются: напряжение в линии, наличие молниеотвода, тип, состояние и максимальное расстояние между опорными конструкциями линии, расположение линии в конкретной климатической зоны (посадка). Каждый тип трубы имеет определенный метод подвески на опорных конструкциях.

Кабельные аксессуары

Чтобы подвесить различные типы кабелей с оптическими волокнами в линиях электропередачи, необходимо использовать соответствующие аксессуары для проводника данного типа. Наиболее популярными кабелями, используемыми для подвески проводов, являются оплетка из стальной проволоки и дополнительные элементы оборудования, которые позволяют закрепить их на несущих конструкциях. Оптоволоконные кабели почти всегда требуют активной антивибрационной защиты, что исключает опасность, вызванную так называемыми ветровыми колебаниями. Чаще всего используются демпферы типа Stockbridge и специальные спиральные демпферы для кабелей ADSS. Соединение оптических изготавливаются путем их сварки, затем их помещают в специальные герметичные распределительные коробки (гильзы), закрепленные на несущих конструкциях линии.

Какие бывают жилы

В сетевых проводах применяется несколько вариантов жил:

  • медные;
  • омедненные.

Виды и категории оптических волокон и кабелей. Одномод и многомод

По виду и назначению различают одномодовые и многомодовые оптические волокна (а также состоящие из них кабели).

  • Одномодовые оптоволоконные нити пропускают лишь 1 световой сигнал (одну моду). Диаметр их сердечника составляет 7-10 мкм (в коммуникационных системах – 9 мкм), а чем он уже, тем ниже дисперсия и меньше затухание луча. Пропускная способность одномодового кабеля ниже, чем многомодового, но он способен передавать данные на бОльшие расстояния.
  • Многомодовые волокна одновременно пропускают несколько сигналов. Их сердечники имеют в несколько раз большее сечение – 50-62,5 мкм, что создает условия для повышения уровня дисперсии и более быстрого затухания импульса. Кабели такого типа предназначены для относительно коротких расстояний.

Волоконно-оптические кабели, которые используют для построения компьютерных сетей, делятся на 7 классов:

  • OS1 – одномод с сердечником 9 мкм.
  • OS2 – широкополосный одномод с сердечником 9 мкм.
  • OM1 – многомод с сердечником 62,5 мкм.
  • OM2 – многомод с сердечником 50 мкм.
  • OM2 plus – могомод с сердечником 50 мкм для лазерных источников (улучшенный).
  • OM3 – высокоскоростной многомод с сердечником 50 мкм.
  • OM4 – оптимизированный многомод с сердечником 50 мкм.

Одномодовые кабели предназначены для межконтинентальных, межгосударственных, межгородских и внутригородских магистралей большой протяженности (обычно от 10 км), а также для связи удаленных узлов оборудования телекоммуникационных компаний и центров обработки данных. То есть их применяют там, где важна непрерывность (или минимальное количество соединений) и повышенная надежность линии.

Кабели такого типа стоят дешевле, чем многомодовые, но если учесть затраты на весь необходимый комплект оборудования, то системы на одномодовой передаче обходятся дороже.

Многомодовые кабели используют для подключения к сети рабочих станций и других конечных устройств внутри помещений, для связи между этажами и близко расположенными зданиями (до 550 м). Также ими оборудуют дополнительные линии связи в центрах обработки данных.

Волоконно-оптические кабели передают данные на расстояние до 40-100 км и поддерживают скорость до 100 Гбит/с. Но это лишь теоретически достижимые значения: на быстроту и качество связи влияет категория кабеля и оборудование, которое обрабатывает сигнал.

Количество жил

Кабель витая пара может выпускаться с 4 и 8 жилами. Для передачи по стандарту на скорости до 100 Мбит/сек можно использовать 4 жилы, а вот чтобы получить больше 100 мегабит/с — 1 Гбит/c, понадобятся все 8 жил кабеля.

Поэтому необходимо заранее выяснить, какая в квартире скорость интернета, чтобы выбрать правильное количество жил кабеля витая пара.

Также изделия выпускаются:

  • одножильными;
  • многожильными.

Кабели с 1 медной жилой используются для проведения линий в стеновых панелях, для подсоединения к розеткам. Не допускается контакта однопроволочного изделия с сетевым оборудованием. На протяженных линиях жилы могут деформироваться, разрушаться.

Кабели многожильные состоят из нескольких проволок. Вид не предназначен для врезки в панели розеток. Изделия пластичные, рекомендованы для выполнения сложной проводки со скручиваниями, прокладки в углах и проходах. Продукция подходит для блоков, объединяющих приборы.

Экранирование

Существует несколько основных способов экранирования сетевых кабелей:

  • FTP – защитное экранирование осуществляется фольгой.
  • F2TP – двойной экран из фольги.
  • S/FTP – каждый из проводников покрыт фольгой.
  • STP – каждая из жил и весь кабель покрыты фольгой.
  • U/STP – каждая из жил по отдельности покрыта фольгой.
  • SF/UTP – кабель покрыт двумя слоями защитного покрытия – оплетку и фольгу.

Наиболее защищенным является SF/UTP. Однако его использование целесообразно только в местах, существенно подверженных электромагнитным колебаниям. Например, если рядом проходят уличные, высоковольтные линии. Маркировка об экранировании по стандарту наносится на пластиковый защитный слой. На обозначении это первые два символа перед знаком дроби.

Экранирование обязательно, если кабель прокладывается неподалеку от силовых линий. В таком случае лучше выбрать кабель с экранированием класса FTP и выше. Поскольку любые силовые линии являются источниками электромагнитного поля, при передаче сигнала требуется максимально защитить его от помех.

Так что же лучше – оптика или медная витая пара

Нынче любой крупный и даже средний интернет-провайдер использует в ряде сегментов своих сетей оптоволокно. И наоборот: как бы провайдер не заманивал подключением к «самой быстрой системе нового поколения», отдельные участки его сетей – традиционный медный кабель. Просто правила им диктуют условия среды (где-то они больше подходят для меди, а где-то – для оптики) и экономическая целесообразность, а маркетинг – есть маркетинг.

К какому виду магистрали подключили ваш дом провайдеры «Медный всадник» и «Оптическая иллюзия», точно не скажет никто, поэтому будем считать, что их предложения различаются только способом подключения абонентов внутри квартир.

В таблице ниже сопоставлены свойства волоконной оптики и витой пары:

Оптоволокно Медная витая пара
Теоретически достижимая скорость связи OS1 – 40 Гбит/с

OS2– 100 Гбит/с

OM3 и ОМ4 – 100 Гбит/с

До 10 Гбит/с для кабелей категории 6 и 7.
Максимальная длина неразрывной линии OS1 – 100 км

OS2 – 40 км

ОМ3 – 300 м

ОМ4 – 125 м.

100 м
Физические свойства кабеля Тонкий, хрупкий Толстый, гибкий
Подверженность внешним воздействиям Чрезмерные изгибы, давление, некоторые виды излучений Электромагнитные помехи, атмосферное электричество, агрессивные химические среды, огонь, несанкционированное подключение для считывания данных
Совместимость с клиентским оборудованием Требует покупки специальных адаптеров Совместима с любыми устройствами, оснащенными гнездами RJ-45
Обслуживание Требует спецоборудования и профессиональной подготовки Требует минимальных навыков и знаний
Стоимость Высокая Низкая

Подведем итоги:

  • Оптоволоконная линия до 10-и раз быстрее и гораздо «дальнобойнее», чем витая пара, она не подвержена влиянию наводок электрического оборудования и силовых линий, долговечна и прочна, не горит, не теряет свойств от влаги, кислот и щелочей. Не допускает шпионских врезок и прослушивания путем индукционного подключения.
  • Волоконно-оптическую сеть легче замаскировать в интерьере, для нее не нужно монтировать широкие неэстетичные кабель-каналы.
  • Волоконная оптика – это хоть и гибкое, но стекло, а любое стекло может трескаться и крошиться. Поэтому монтаж и модернизация такой сети требует большой аккуратности. Если поврежденную витую пару можно разрезать и соединить простой скруткой, то для восстановления разорванной оптики нужен специальный сварочный аппарат и умение с ним обращаться. А иногда даже небольшое повреждение волоконно-оптической линии требует полной ее замены.
  • Главное преимущество витой пары – дешевизна и простота в обиходе. За подключение к Интернету посредством медного кабеля с вас, скорее всего, не возьмут никаких дополнительных денег, а за оптику придется заплатить, ведь она дорогая. Витую пару с универсальным коннектором можно сразу воткнуть в компьютер – и на нем появится Интернет. Для оптики снова придется раскошелиться на специальную розетку, модем (ONT-терминал или роутер), сетевые адаптеры. А это тоже недешево.

Чисто оптоволоконные сети внутри домов и квартир пока большая редкость, чаще всего их делают гибридными – частично оптическими, частично меднопроводными, частично беспроводными. Оптику обычно подводят только к модему, а конечные устройства – компьютеры, смартфоны, смарт ТВ и т. д. получают Интернет всё по той же витой паре или Wi-Fi, ведь они не оборудованием модулями декодирования светового сигнала. Значит, какие бы сверхскорости ни обещал вам провайдер, медленные сегменты сети сведут ее на нет.

Итак, ваш выбор «Медный всадник», если:

  • Вы не хотите переплачивать за то, чего, скорее всего, не получите. Если ваши устройства – потребители Интернет-трафика работают на устаревших протоколах Ethernet или Wi-Fi, то оптика не сделает их быстрее.
  • Вы часто переносите компьютер с места на место, у вас есть собака, которая любит жевать провода или маленькие дети, хватающие всё подряд. И в случае повреждения кабеля вам проще починить его своими руками, чем платить мастеру.

Вам лучше стать клиентом «Оптической иллюзии», если:

  • Вы за всё новое против всего старого. Волоконная оптика – это технология будущего, а значит, достойна инвестиций. И пусть она дружит не с каждым девайсом – скоро, надо ожидать, производители последних возьмутся за ум и оборудуют свои продукты поддержкой оптоволокна. Ведь потребители этого хотят и готовы вкладываться.
  • Финансы для вас – не проблема. У вас современная техника, которая поддерживает последние протоколы проводной и беспроводной связи, и вы готовы заставить ее «взять максимальную высоту».
  • Вам нужна скорость, и этим все сказано.
  • Безопасность сети в плане возможной утечки данных – ваше всё.

Преимущества и недостатки оптического волокна

Хотя оптическое волокно имеет преимущества в скорости и пропускной способности по сравнению с медным кабелем, стоит учитывать, что у него также есть и определенные недостатки. Вот преимущества и недостатки оптического волокна.

Преимущества оптического волокна

Большая пропускная способность & более высокая скорость—оптоволоконный кабель поддерживает чрезвычайно высокую пропускную способность и скорость. Большое количество информации, которое может быть передано на единицу оптоволоконного кабеля, является его наиболее значительным преимуществом.

Дешевка—длинные, непрерывные мили оптоволоконного кабеля могут быть сделаны дешевле, чем эквивалентные длины медного провода. С многочисленными поставщиками, борющимися за долю рынка, цена оптического кабеля обязательно упадет.

Тоньше и легче—оптическое волокно тоньше, и его можно вытянуть на меньшие диаметры, чем медный провод. Они имеют меньший размер и легкий вес, чем сопоставимый медный кабель, поэтому лучше подходят для мест, где требуется пространство.

Более высокая пропускная способность—поскольку оптические волокна намного тоньше, чем медные провода, больше волокон могут быть объединены в кабеле заданного диаметра. Это позволяет больше телефонных линий переходить по одному и тому же кабелю или большему каналу, проходящему через кабель в вашу кабельную телевизионную коробку.

Меньшая деградация сигнала—потеря сигнала в оптическом волокне меньше, чем в медном проводе.

Световые сигналы—в отличие от электрических сигналов, передаваемых по медным проводам, световые сигналы от одного волокна не влияют на сигналы других волокон в том же оптоволоконном кабеле. Это означает более четкие телефонные разговоры или прием на телевидении.

Долгий срок службы—оптические волокна обычно имеют более длительный жизненный цикл более 100 лет.

Недостатки оптического волокна

Низкая мощность—светоизлучающие источники ограничены низкой мощностью. Хотя излучатели высокой мощности доступны для улучшения энергопотребления, это добавит дополнительную стоимость.

Хрупкость—оптическое волокно довольно хрупкое и более уязвимо к повреждениям по сравнению с медными проводами. Лучше не скручивать и не сгибать оптоволоконные кабели слишком сильно.

Расстояние—расстояние между передатчиком и приемником должно быть коротким, или повторители необходимы для усиления сигнала.

Кварцевое многомодовое волокно

Кварцевые волокна являются самым известным и распространенным типом оптических волокон. Поскольку многомодовые и одномодовые кварцевые волокна сильно отличаются по своим характеристикам и применению, удобнее рассмотреть их по отдельности.

Многомодовое кварцевое волокно имеет и сердцевину, и оптическую оболочку из кварцевого стекла. Как правило, такое оптоволокно имеет градиентный профиль показателя преломления. Это необходимо, чтобы снизить влияние межмодовой дисперсии. Как было показано выше, моды распространяются в оптическом волокне по разным траекториям, а значит, время распространения каждой моды также отличается. Это приводит к уширению передаваемого импульса. Градиентный профиль уменьшает разницу во времени распространения мод. За счет плавного изменения показателя преломления моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины. Полностью устранить влияние межмодовой дисперсии невозможно, поэтому многомодовое волокно уступает одномодовому по дальности и скорости передачи информации.

Рабочими для многомодового волокна обычно являются длины волн 850 и 1300 (1310) нм. Типичное затухание на этих длинах волн – 3,5 и 1,5 дБ/км соответственно.

Классификация. Кварцевое многомодовое волокно было первым типом волокна, которое стало широко применяться на практике. Распространение получили два стандартных размера многомодовых волокон (диаметр сердцевины/оболочки): 62,5/125 мкм и 50/125 мкм.

Общепринятая классификация многомодовых кварцевых волокон приводится в стандарте ISO/IEC 11801. Этот стандарт выделяет четыре класса многомодовых волокон (OM – Optical Multimode), отличающиеся шириной полосы пропускания (параметр, характеризующий межмодовую дисперсию и определяющий скорость передачи информации):

  • OM1 – стандартное многомодовое волокно 62,5/125 мкм;
  • OM2 – стандартное многомодовое волокно 50/125 мкм;
  • OM3 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
  • OM4 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.

Фраза «оптимизированное для работы с лазером» напоминает о том, что изначальна для передачи сигнала по многомодовому волокну использовались светодиоды (LED). С появлением полупроводниковых лазеров стали разрабатываться волокна более совершенной структуры, названные оптимизированными для работы с лазерами.

Применение. Многомодовое волокно применяется в непротяженных линиях связи (обычно сотни метров), причем волокно 50/125 мкм (OM2, OM3, OM4) используется в основном в локальных сетях и дата-центрах, а волокно 62,5/125 мкм часто применяется в индустриальных сетях. В гигабитных приложениях рекомендуется применять волокна классов OM3 и OM4. Причина, по которой многомодовое волокно до сих пор не вытеснено одномодовым волокном, обладающим лучшими характеристиками, заключается в меньшей стоимости компонентов линии (активное оборудование, соединительные изделия). Цена снижается из-за большего диаметра сердцевины многомодового волокна, и, соответственно, меньших требований к точности изготовления и монтажа компонентов.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Мастер на все руки
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector